Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 757: 143782, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33229082

RESUMO

The marine dinoflagellate Vulcanodinium rugosum produces powerful paralyzing and cytotoxic compounds named pinnatoxins (PnTX) and portimines. Even though, no related human intoxication episodes following direct exposure in seawater or the ingestion of contaminated seafood have been documented so far. This study aimed at investigating a dinoflagellate bloom linked to acute dermatitis cases in two recreational beaches in Cienfuegos Bay, Cuba. We used epidemiological and clinical data from 60 dermatitis cases consisting of individuals in close contact with the bloom. Seawater physical-chemical properties were described, and the microorganism causing the bloom was identified by means of light and scanning electron microscopy. Morphological identification was confirmed genetically by sequencing the internal transcribed spacers ITS1 and ITS2, and the 5.8S rDNA region. Toxic compounds were identified from a bloom extract using liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS), and their concentrations were estimated based on low-resolution tandem mass spectrometry (LC-MS/MS). Sixty people who had prolonged contact with the dinoflagellate bloom suffered acute dermal irritation. Most patients (79.2%) were children and had to be treated with antibiotics; some required >5-day hospitalization. Combined morphological and genetic characters indicated V. rugosum as the causative agent of the bloom. rDNA sequences of the V. rugosum genotype found in the bloom aligned with others from Asia, including material found in the ballast tank of a ship in Florida. The predominant toxins in the bloom were portimine, PnTX-F and PnTX-E, similar to strains originating from the Pacific Ocean. This bloom was associated with unusual weather conditions such as frequent and prolonged droughts. Our findings indicate a close link between the V. rugosum bloom and a dermatitis outbreak among swimmers in Cienfuegos Bay. Phylogenetic evidence suggests a recent introduction of V. rugosum from the Pacific Ocean into Caribbean waters, possibly via ballast water.


Assuntos
Dermatite , Dinoflagelados , Ásia , Baías , Região do Caribe , Criança , Cromatografia Líquida , Cuba , Florida , Proliferação Nociva de Algas , Humanos , Iminas , Oceano Pacífico , Filogenia , Compostos de Espiro , Espectrometria de Massas em Tandem
2.
Toxins (Basel) ; 11(8)2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357621

RESUMO

Ostreopsis cf. ovata is a toxic marine benthic dinoflagellate responsible for harmful blooms affecting ecosystem and human health, mostly in the Mediterranean Sea. In this study we report the occurrence of a summer O. cf. ovata bloom in Currais, a coastal archipelago located on the subtropical Brazilian coast (~25° S). This bloom was very similar to Mediterranean episodes in many aspects: (a) field-sampled and cultivated O. cf. ovata cells aligned phylogenetically (ITS and LSU regions) along with Mediterranean strains; (b) the bloom occurred at increasing temperature and irradiance, and decreasing wind speed; (c) cell densities reached up to 8.0 × 104 cell cm-2 on fiberglass screen and 5.6 × 105 cell g-1 fresh weight on seaweeds; (d) and toxin profiles were composed mostly of ovatoxin-a (58%) and ovatoxin-b (32%), up to 35.5 pg PLTX-eq. cell-1 in total. Mussels were contaminated during the bloom with unsafe toxin levels (up to 131 µg PLTX-eq. kg-1). Ostreopsis cells attached to different plastic litter, indicating an alternate route for toxin transfer to marine fauna via ingestion of biofilm-coated plastic debris.


Assuntos
Bivalves/microbiologia , Dinoflagelados , Proliferação Nociva de Algas , Toxinas Marinhas/análise , Plásticos , Animais , Biofilmes , Brasil , Dinoflagelados/genética , Dinoflagelados/fisiologia , Microalgas/genética , Microalgas/fisiologia , Filogenia , Água do Mar/microbiologia
3.
Deep Sea Res 2 Top Stud Oceanogr ; 103: 139-162, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25143669

RESUMO

Multiple species in the toxic marine diatom genus Pseudo-nitzschia have been identified in the Northwestern Atlantic region encompassing the Gulf of Maine (GOM), including the Bay of Fundy (BOF). To gain further knowledge of the taxonomic composition and toxicity of species in this region, Pseudo-nitzschia isolates (n=146) were isolated from samples collected during research cruises that provided broad spatial coverage across the GOM and the southern New England shelf, herein referred to as the GOM region, during 2007-2008. Isolates, and cells in field material collected at 38 stations, were identified using electron microscopy (EM). Eight species (P. americana, P. fraudulenta, P. subpacifica, P. heimii, P. pungens, P. seriata, P. delicatissima and P. turgidula), and a novel form, Pseudo-nitzschia sp. GOM, were identified. Species identity was confirmed by sequencing the large subunit of the ribosomal rDNA (28S) and the internal transcribed spacer 2 (ITS2) for six species (36 isolates). Phylogenetic analyses (including neighbor joining, maximum parsimony, and maximum likelihood estimates and ITS2 secondary structure analysis) and morphometric data supported the placement of P. sp. GOM in a novel clade that includes morphologically and genetically similar isolates from Australia and Spain and is genetically most similar to P. pseudodelicatissima and P. cuspidata. Seven species (46 isolates) were grown in nutrient-replete batch culture and aliquots consisting of cells and growth medium were screened by Biosense ASP ELISA to measure total domoic acid (DA) produced (intracellular + extracellular); P. americana and P. heimii were excluded from all toxin analyses as they did not persist in culture long enough for testing. All 46 isolates screened produced DA in culture and total DA varied among species (e.g., 0.04 to 320 ng ml-1 for P. pungens and P. sp. GOM isolates, respectively) and among isolates of the same species (e.g., 0.24 - 320 ng ml-1 for P. sp. GOM). The 15 most toxic isolates corresponded to P. seriata, P. sp. GOM and P. pungens, and fg DA cell-1 was determined for whole cultures (cells and medium) using ELISA and liquid chromatography (LC) with fluorescence detection (FLD); for seven isolates, toxin levels were also estimated using LC - with mass spectrometry and ultraviolet absorbance detection. Pseudo-nitzschia seriata was the most toxic species (up to 3,500 fg cell-1) and was observed in the GOM region during all cruises (i.e., during the months of April, May, June and October). Pseudo-nitzschia sp. GOM, observed only during September and October 2007, was less toxic (19 - 380 fg cell-1) than P. seriata but more toxic than P. pungens var. pungens (0. 4 fg cell-1). Quantitation of DA indicated that concentrations measured by LC and ELISA were positively and significantly correlated; the lower detection limit of the ELISA permitted quantification of toxicity in isolates that were found to be nontoxic with LC methods. The confirmation of at least seven toxic species and the broad spatial and temporal distribution of toxic Pseudo-nitzschia spp. have significant implications for the regional management of nearshore and offshore shellfisheries resources.

4.
Pesticidas ; 9: 75-84, jan.-dez. 1999. tab, graf
Artigo em Português | LILACS | ID: lil-256451

RESUMO

Rapidamente tem crescido o interesse dos efeitos adversos das atividades antropogênicas sobre os ecossistemas naturais. Poluiçäo química é uma das mais pronunciadas consequências da industrializaçäo. O potencial dos impactos destas substâncias estressoras sobre os ecossistemas aquáticos e seus organismos podem ser avaliados, em parte, por testes ecotoxicológicos de diferentes complexidades. A questäo é: qual a complexidade dos sistemas testes que possa demonstrar de forma mais realística os efeitos das taxas de risco em comunidades naturais? Este trabalho teve por objetivo principal testar o desenho experimental de um bioensaio de multiespécies, utilizando a comunidade do fitoplâncton marinho natural. Observou-se taxas de crescimento algal e composiçäo específica a partir da induçäo de stress pelo agente químico Dicofol (1,1-bis-(clorofenil)-2,2,2-tricloroetano)


Assuntos
Bioensaio , Dicofol , Ecossistema , Fitoplâncton , Poluição Química da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...